

Computer-Aided Design and Optimization
of High-Performance Vacuum Electronic

Devices

SBIR Phase 2
Progress Report 1

(covering period 11/1/2005-1/31/2006)

Contract/Purchase Order Number: N00014-05-C-0375
Simulation Technology & Applied Research Report Number: 06-SBIR-ONR-T1

Prepared for the Office of Naval Research

February 21, 2006

John F. DeFord, Ben Held, and Liya Chernyakova
Simulation Technology & Applied Research, Inc.

11520 N. Port Washington Rd., Suite 201
Mequon, WI 53092

P: 1-262-240-0291 x102 F: 1-262-240-0294 E: john.deford@staarinc.com

John Petillo
Scientific Applications International Corporation

Suite 130, 20 Burlington Mall Rd.
Burlington, MA 01813

P: 1-781-221-7615 F: 1-781-270-0063 E: jpetillo@bos.saic.com

SBIR Data Rights

Simulation Technology & Applied Research, Inc.
11520 N. Port Washington Rd., Suite 201 Mequon, WI 53092-3432
P: 1.262.240.0291 F: 1.262.240.0294 W: www.staarinc.com

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI-Std Z39-18

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
21-02-2006

2. REPORT TYPE
Interim

3. DATES COVERED (From - To)
Oct., 2005 - Jan., 2006

5a. CONTRACT NUMBER
N00014-05-C-0375

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
Computer-Aided Design and Optimization of High-Performance
Vacuum Electronic Devices

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)
J. F. DeFord, B. Held, L, Chernykova
Simulation Technology & Applied Research, Inc.

J. Petillo
Scientific Applications International Corporation 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Simulation Technology & Applied Research, Inc.
11520 N. Port Washington Rd., Suite 201, Mequon, WI 53092

8. PERFORMING ORGANIZATION
REPORT NUMBER
06-SBIR-ONR-T1

10. SPONSOR/MONITOR'S ACRONYM(S)
ONR

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research
875 North Randolph St. Suite 1425
Arlington, VA 22203-1995 11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
001AC

12. DISTRIBUTION AVAILABILITY STATEMENT
Unlimited/Unclassified

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Project activities during the previous three months include the acquisition and setup of a LINUX cluster for use in
optimization studies and the design and initial implementation of the optimization library, including support for the
differential evolution and multi-directional search algorithms. Initial testing of the algorithms on several analytic functions
has validated the implementations. Work on the implementation of user-interface support for the optimization library in
the Analyst product has also begun, with the initial implementations of all panels now complete.

15. SUBJECT TERMS
optimization,LINUX cluster,differential evolution,multi-directional search

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
John F. DeFord

a. REPORT
UU

b. ABSTRACT
UU

c. THIS PAGE
UU

17. LIMITATION OF
ABSTRACT
UU

18. NUMBER
OF PAGES
9

19b. TELEPONE NUMBER (Include area code)
(262) 240-0291 x102

 Simulation Technology & Applied Research, Inc.
Contract Number: N00014-05-C-0375 Progress Report 1 for Period 11/1/2005-1/31/2006

 1

Abstract
Project activities during the previous three months include the acquisition and setup of a
LINUX cluster for use in optimization studies and the design and initial implementation
of the optimization library, including support for the differential evolution and multi-
directional search algorithms. Initial testing of the algorithms on several analytic
functions has validated the implementations. Work on the implementation of user-
interface support for the optimization library in the Analyst product has also begun, with
the initial implementations of all panels now complete.

 Simulation Technology & Applied Research, Inc.
Contract Number: N00014-05-C-0375 Progress Report 1 for Period 11/1/2005-1/31/2006

 1

Executive Summary
The following items have been accomplished in the first three months of the project:

• LINUX cluster has been procured and is now operational at STAR.
• Basic implementations of multi-directional search (MDS1) and differential

evolution (DE2) algorithms is complete.
• Initial testing of MDS and DE implementations is complete.
• Work on the Analyst user interface to the optimization library has begun.

LINUX Cluster
As part of the project startup we built a cluster that will be used for design optimization.
The current cluster consists of 4 dual processor computers. Each computer utilizes the
Tyan S2892G3NR mainboard, dual AMD Opteron 248 (2.2GHz, 1MB Cache)
processors, 8 GB RAM (4 each - DDR400 2GB ECC/Registered – can be expanded to 16
GB each), dual Seagate 250GB Serial ATA 7200rpm hard drives, DVD-RW drive, all
enclosed in a Cooler Master STC-T01-UWK Stacker case. The OS is the latest version
of Redhat Fedora Core 4 (64-bit version). The computers are connected using a single
gigabit Ethernet (Cat 5e) using a dedicated 16-port gigabit switch. The LAM MPI
implementation (version 7.1.1-3) is being utilized for inter-process communication.

On tests of a parallel LU solver written by STAR, the cluster has achieved speeds in
excess of 4000 MFLOP when all 8 processors are employed, and we expect it to
dramatically reduce collector optimization times when used with MICHELLE
(MICHELLE is a serial code, but we will utilize the cluster to run up to eight
simultaneous jobs during an optimization).

Implementation of Multi-Directional Search and Differential Evolution Algorithms
The initial implementations of both DE and MDS are now complete, and integration into
Analyst is underway. The implementations are composed of a set of C++ classes that
will eventually be combined into a library that can be delivered to NRL, and also utilized
in both the Voyager GUI for MICHELLE (where it will interface to the Java system), and
the Analyst package.
The optimization package is architected so that it may be used to control a generic
optimization process. As such, method-specific functions are declared as virtual or pure
virtual in base classes, and are overloaded as necessary in derived classes that are
specialized to a particular method. This architecture will make it very easy to add other
methods to the library, without having to modify core functionality like process control,
previous result lookup, and interactions with the analysis package. The classes are
briefly described in Appendix 1.

1 V. Torczon, Multi-Directional Search: A Direct Search Algorithm for Parallel Machines, Ph. D. thesis,
Rice University, Houston, TX, May, 1989.
2 R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization
over continuous spaces,” J. Global Optim., 11, 1997, pp. 341-359.

 Simulation Technology & Applied Research, Inc.
Contract Number: N00014-05-C-0375 Progress Report 1 for Period 11/1/2005-1/31/2006

 2

MDS Algorithm
This approach is a direct search simplex method that is closely related to the Nelder-
Mead method3 in which a non-degenerate simplex of dimension n+1 is updated (for an n-
dimensional parameter vector) at each step. The volume enclosed by the simplex reduces
until it encloses an extremum of the objective function.
A step in the process begins with stored values of the simplex vertices (parameter
vectors) and the associated objective function values. The vertex with the best
(minimum) value of the objective function is identified, and a set of n search directions is
defined by the edges that connect the best vertex to the remaining vertices in the simplex.
The length of each edge defines the length of the associated step in that direction, i.e., the
new sample points are obtained by “reflecting” each vertex about the best vertex, with the
connecting edge defining the reflection plane normal. The new sample points, together
with the previous best vertex, form a new simplex that is accepted for the next iteration if
at least one of its vertices has a better objective function value than does the previous best
vertex. If the simplex is not accepted there are is a simple set of expansion and/or
contraction steps (wherein the search directions are maintained but the step-size is
changed) that are performed to find an acceptable new simplex. The process terminates
when the simplex nodes, and the corresponding goal function values, become “close
enough”. More precisely, the two criteria are:

() ()() δ≤− = NESiibest XFXF ...1|max
rr

δ≤
−∑ =

NES
XXNES

k meank1
2||||

rr

where δ is a user defined parameter, and NES is the number of experiments in one
iteration.
One advantage this method has over Nelder-Mead and some other direct search
approaches is that it is inherently parallel, because the processing and function
evaluations associated with the different search directions are independent and can be
performed simultaneously on different processors. This feature will be exploited later on
in the project when we enable Analyst to distribute independent MICHELLE analyses on
individual processors of a cluster.
DE Algorithm
This method comes from a class of algorithms based upon evolutionary principles. To
start the process, an initial “population” of random vectors { }0,kp is created that all
satisfy the parameter constraints. At each iteration (called a “generation”) of the process,
new vectors are obtained from the previous set using the following concepts:

• Mutation. A new vector is formed via a combination of existing vectors of the
form
 ()GlGkGiGi ,,,1, pppv −+=+ α

3 Nelder, J. A. and Mead, R. "A Simplex Method for Function Minimization." Comput. J. 7, 308-313, 1965.

 Simulation Technology & Applied Research, Inc.
Contract Number: N00014-05-C-0375 Progress Report 1 for Period 11/1/2005-1/31/2006

 3

• Recombination (also called crossover). A candidate “child” vector is formed by
taking some (randomly selected) parameter values directly from the parent Gp ,
and the rest from the differential combination vector Gv , i.e.,





∉
∈

=+ Si
Si

Gi

Gi
Gi ,

,

,

,
1, p

v
u

• Selection. A parent vector is replaced with a child vector if the objective function
is reduced. Otherwise, additional children are created and tested until either one
is found that reduces the objective function or some maximum number of
offspring is reached. If no child is more “fit” than the parent, the parent passes to
the new generation (if they are not eliminated by the aging criterion below).

• Aging. A vector can only “survive” for a limited number of generations,
regardless of its “fitness”.

In addition to the basic DE algorithm, we implemented several variations of how the
subsequent generation is constructed4.

Variation
Name

Expression

A [] [] [] []()21 randCurrandCurFnCurnNext −∗+=
B [] [] []()21 randCurrandCurFBestnNext −∗+=
C [] [] [] []()213 randCurrandCurFrandCurnNext −∗+=
D [] [] []() [] []()21* randCurrandCurFnCurBestFnCurnNext −∗+−+=

[]nNext – next n-th trial vector.
[]nCur – current n-th trial vector.

Best - best vector in the trial set.
irand - randomly selected vector indexes in the previous random set, n ≠ randi

 F – user defined coefficient 0 ≤ F ≤ 1.
Goal Functions
Goal functions and constraints (with the exception of simple range constraints) will be
defined in terms of Python functions. The user interface will present the user with a set
of pre-defined goal functions, and also provide the ability to create/import/edit goal
function and constraint scripts.

Algorithm Testing
We have tested the algorithms on a variety of analytic functions, including:

1. Simple quadratic in two dimensions.
2. A discrete function of two parameters of the form:

() ()




∞
≤=≤−≤=≤−

=
otherwise

dyyjdxxirand
yxR ji 100)/int(100,100)/int(100)1,0(
],[,

4 R. Storn and K. Price, differential evolution “c” code, http://www.icsi.berkeley.edu/~storn/de36.c.

 Simulation Technology & Applied Research, Inc.
Contract Number: N00014-05-C-0375 Progress Report 1 for Period 11/1/2005-1/31/2006

 4

where rand(0,1)i,j is a random number in the range [0,1] that is generated for each
i,j position on the grid.

3. The square root of R defined above.
4. The square of R defined above.
5. A sum of squares of thirty variables.

These functions were chosen to stress the algorithm and reveal any problems in the
implementation, not because they are representative of real-world design optimization
problems. Based on these tests we believe that all of the variants of DE are now working
properly, and testing of MDS is underway. Testing on design problems will begin as
soon as the implementation in Analyst is complete, and this is expected within the next
few weeks.

User Interface Development
The user interface in Analyst to the optimization library will take the form of a “wizard”,
which is a set of panels that are navigated via “Next” and “Back” buttons. This format
allows control over the setup process, thereby simplifying it for the user. The panels will
walk the user through the following steps:

1. Parameter selection. The user is presented with a list of all parameters of the
model (these will include geometric, material, and solver setup parameters).
Parameters are included/excluded via a checkbox next to the name, and the user
can also specify a short codename for each parameter that is used in the constraint
and goal function definitions.

2. Constraint definition. This includes defining both a range of validity for each
selected parameter, and also an optional Python function that further restricts the
domain.

3. Goal function definition. A Python function that takes a result database and list of
geometric parameters and returns a real number. Several predefined functions
will be defined, and the user will also be able to define their own.

4. Setting of optimization control parameters. Selection of the algorithm, and
definition of values that control the algorithm, e.g., the maximum number of
analyses.

5. Execution of optimization. Progress information will be displayed in tabular and
graphical formats, and various abort options will be available to allow termination
of the process if desired.

The initial implementations of some of these panels is shown in Figs. 1-3.

Next Phase
Work in the next 3 months will include:

• Completion of user interface to optimization capabilities in Analyst.
• Continued testing and refinement of MDS and DE algorithms.
• Initial optimizations of a collector with MICHELLE.

 Simulation Technology & Applied Research, Inc.
Contract Number: N00014-05-C-0375 Progress Report 1 for Period 11/1/2005-1/31/2006

 5

Fig. 1. Parameter selection panel.

Fig. 2. Parameter constraint definition panel.

 Simulation Technology & Applied Research, Inc.
Contract Number: N00014-05-C-0375 Progress Report 1 for Period 11/1/2005-1/31/2006

 6

Fig. 3. Algorithm control panel.

Appendix 1: Software Description
The optimization algorithms were implemented in the C++ programming language, and
will later be made into a library that can be called from either Analyst or the Voyager
GUI. In order to implement optimization in the most general terms a class hierarchy was
created that will support not only MDS and DE, but other methods as well. The current
implementation has support for arbitrary numbers of parameters, range limits on
parameters, and the ability to define rectangular volumes in parameter space that are
“out-of-bounds”. The important classes in this hierarchy are listed in Table 1.

Table 1. Optimization classes.
Class Name Purpose

SOptOptimizer Responsible for procedures common for all
optimization algorithms. Implements
optimization, submitting trial set for analysis
and retrieving results, submitting information to
the program log, storing necessary information
on completed trials in the program database.

SOptDEOptimizer Implements DE optimization algorithms.
Inherits from SOptOptimizer, overloads
functions responsible for initializing first trial
set, analyzing current trial and creating next trial
set, check for stopping criteria.

SOptMDSOptimizer Implements MDS optimization algorithms.
Inherits from SOptOptimizer, overloads
functions responsible for initializing first trial

 Simulation Technology & Applied Research, Inc.
Contract Number: N00014-05-C-0375 Progress Report 1 for Period 11/1/2005-1/31/2006

 7

set, analyzing current trial and creating next trial
set, check for stopping criteria.

SOptExperimentMgr Interface for the program that runs trial vector
analysis. Interfaces functions for evaluating set
of goal functions from set of trial vectors,
function that initializes trial vector variables,
implements functions responsible for creating
single trial vector and single trial variable.

SOptLog Interface to store general information on
optimization, interfaces Log, Message,
Warning, Error, Fatal functions.

SOptOutputMgr Interface for storing trial sets in some
predefined database. Interface functions
responsible for adding new table definition,
adding data to and retrieving from existing
table.

SOptExperiment Stores data related to one trial vector.
Implements functions for creating, arithmetical
manipulations, and validity check as well as
direct setting/retrieving variable/goal function
values and trial status.

SOptControlParams Stores/retrieves user defined optimization
control parameter.

SOptExperimentVariableValues Responsible for storing/retrieving/arithmetical
operations and validity check over trial vector
component values.

SOptExperimentVar Responsible for storing/retrieving/arithmetical
operations and validity check over one
component of trial vector.

SOptVariableConstraint Implements single constraint requirement for
one trial vector component to meet.

SOptExperimentCollection Implements internal storage for trial vector sets.

